Robustness of simple avian population trend models for semi-structured citizen science data is species-dependent

Philipp H. Boersch-Supan ${ }^{1,2, *}$, Amanda E. Trask ${ }^{1,3}$, Stephen R. Baillie ${ }^{1}$
1. British Trust for Ornithology, Thetford, United Kingdom
2. Department of Geography, University of Florida, Gainesville, FL, USA
3. Institute of Zoology, Zoological Society of London, London, United Kingdom
* Corresponding author details: pboesu@gmail.com

Abstract

Accurate and robust population monitoring is essential to effective biodiversity conservation. Citizen scientists are collecting opportunistic biodiversity records on unprecedented temporal and spatial scales, vastly outnumbering the records achievable from structured surveys. Opportunistic records may exhibit spatio-temporal biases and/or large heterogeneity in observer effort and skill, but the quantity-quality trade-offs between surveys and less structured schemes remain poorly understood.

Recent work has advocated the use of simple trend models for opportunistic biodiversity records. We examine the robustness of population trends of common United Kingdom birds derived from two citizen-science schemes; BirdTrack, an opportunistic recording scheme, and the structured Breeding Bird Survey (BBS). We derived reporting rate trends from BirdTrack lists using simple statistical models which accounted for list-level effort covariates but not for preferential sampling, and compared them to abundance and occurrence trends derived from BBS survey data.

For 90 out of 141 species, interannual changes in reporting rates were positively correlated with trends from structured surveys. Correlations were higher for widespread species and those exhibiting marked population change. We found less agreement among trends for rarer species and those with small or uncertain population trajectories. The magnitude of long-term changes in reporting rates was generally smaller than the magnitude of occupancy or abundance changes, but this relationship exhibited wide scatter, complicating the interpretability of reporting rate trends. Our findings suggest that simple statistical models for estimating population trends from opportunistic complete lists are robust only for widespread and common species, even in a scheme with many observers and extensive coverage.

Keywords: Avian ecology; biodiversity monitoring; breeding bird survey; Citizen science; population trend; list-length analysis

34

35
36
37
38

1 Introduction

The ability to accurately and robustly quantify species' population size trajectories over time is key to successful biodiversity conservation. Monitoring of changes in a species' population size is essential to assess threat status; to act as an early-warning signal to detect population declines; for conservation resource prioritization; and to assess the efficacy of current environmental policies (Lawton 1993; Johnston et al. 2015; IUCN 2016). Yet, most animal and plant populations cannot be censused (i.e. completely enumerated), or even robustly surveyed, given the limited resources available for population monitoring. Even for birds, which are one of the best monitored taxonomic groups globally, large geographic biases exist in monitoring effort (Meyer et al. 2015, 2016; Amano, Lamming \& Sutherland 2016). This affects not only our knowledge of species distributions, but also of the processes determining biodiversity change, since the factors driving population dynamics, such as climate change effects, are likely to differ between surveyed and unsurveyed regions (Pearce-Higgins et al. 2015).

Long-term structured surveys, which use randomly selected sites and survey methods that are standardized over time and space, can provide robust population trends for many common species. However, such structured surveys require large and long-term commitments by volunteers and can be costly to organize and coordinate (Schmeller et al. 2009). Instead, citizen science projects which rely on the opportunistic collection of biodiversity records by interested members of the public may be a cost-effective means to greatly increase the spatial and temporal scale of distribution and abundance data (Dickinson, Zuckerberg \& Bonter 2010; Isaac \& Pocock 2015). Even though such projects may have a primary goal other than population monitoring, e.g. raising awareness about focal taxa or to facilitate personal record keeping for amateur naturalists, there is an increasing interest in using such schemes to fill in knowledge gaps in regions that are poorly or not at all covered by structured surveys, and as a basis to obtain indices of population trajectories that meaningfully capture the true population trends of species (Kery et al. 2010; Isaac et al. 2014; Horns, Adler \& Şekercioğlu 2018). Trend modelling based on such data is challenging because of known biases in site selection, visit timing, survey effort, and/or surveyor skill (Isaac \& Pocock 2015; Johnston et al. 2018, 2019). Thus there is usually a tradeoff between collecting a large amount of relatively heterogeneous (i.e. lower 'quality') data or a smaller amount of higher 'quality' data conforming to a defined common structure.

The consequences of this quantity versus quality trade-off are still poorly understood (AcevesBueno et al. 2017; Bayraktarov et al. 2018; Kelling et al. 2018; Specht \& Lewandowski 2018). There is a growing set of modelling approaches to address the challenges of unstructured data sets using auxiliary structured biodiversity data and/or observation models that account for preferential sampling, but these come at the cost of increased model complexity and computational demands (Pagel et al. 2014; Fithian et al. 2015; Robinson, Ruiz-Gutierrez \& Fink 2018; Johnston et al. 2019). Other recent work has investigated whether relatively simple models are sufficient to extract population trend information from less structured data (Roberts, Donald \& Green 2007; Snäll et al. 2011; Kamp et al. 2016; Walker \& Taylor 2017; Horns et al. 2018). These simpler approaches generally rely on the assumption that the information gain from a larger quantity of records outpaces potential biases from opportunistic sampling. They also make two further assumptions, namely that reporting rates are a good proxy of site occupancy, and that population abundance and site occupancy are positively correlated for each species. However, reporting rate - site occupancy relationships may be influenced by, for example, species
detectability (Johnston et al. 2014). Further, while there is a large body of literature providing empirical evidence that - in general - abundance-occupancy relationships are positive (e.g. Gaston et al. 2000; Webb, Noble \& Freckleton 2007; Webb, Freckleton \& Gaston 2012), there can be high interspecific variability in the exact nature of intraspecific abundanceoccupancy relationships (Webb et al. 2007). Ultimately, violations of these assumptions could result in unreliable population trend estimates, potentially leading to incorrect species status assessments. To develop robust biodiversity monitoring schemes, it is therefore essential that the consequences of such assumptions are fully understood.

Few opportunities exist for the direct comparisons between opportunistic biodiversity data against a robust benchmark, especially on large spatial and temporal scales, and across many species. We here leverage the spatial and temporal overlap of two national citizen science schemes to investigate the utility of semi-structured species lists to derive robust population trends for common breeding birds across the United Kingdom. We use data from "BirdTrack" (www.birdtrack.net), an opportunistic bird recording scheme (Baillie et al. 2006; Newson et al. 2016), and the "Breeding Bird Survey" (BBS), one of the most rigorous structured breeding bird monitoring schemes globally (Gregory, Baillie \& Bashford 2000). We then test the extent to which assumptions made by relatively simple modelling approaches with regard to occurrenceabundance relationships, and reporting rate-occurrence and reporting rate-abundance relationships hold when applied to individual species within a national avifauna. Further, we assess whether the strength of relationships between trends derived from different survey and data types could be predicted from species characteristics.

2 Materials and Methods

2.1 Data sources

We estimated three different annual population indices - relative abundance, relative occurrence, and birdwatcher reporting rate - for 141 of the commonest species of breeding birds in the United Kingdom covering the period from 2005 to 2017.

The structured dataset employed in this analysis came from the Breeding Bird Survey (BBS), which is a partnership project of the British Trust for Ornithology (BTO), the Joint Nature Conservation Committee, and the Royal Society for the Protection of Birds (RSPB) (Gregory et al. 2000; Harris et al. 2017). The BBS follows a strict sampling protocol in which skilled volunteer surveyors count all birds heard or seen along two 1 km of transect lines, 500 m apart from each other and within a $1 \mathrm{~km}^{2}$ site on two annual visits during the breeding season. Sites are randomly selected following a stratified random design which accounts for variable volunteer availability across the survey area. Survey coverage of the BBS is high (1.10-1.65\% of the UK territory for the study period (Harris et al. 2017)), and largely unbiased with respect to habitat types (with the exception of mountainous areas; Fig. S3), making it one of the most rigorous avian monitoring schemes globally. As the BBS data serve as a reference in this study we focussed on a set of 141 species (c. 60% of UK breeding species; Table S2) for which there was a reasonable expectation that the BBS approach can deliver a meaningful estimate of breeding population trend, e.g. by excluding species with large wintering or non-breeding populations such as fieldfare Turdus pilaris and gulls (Harris et al. 2017).

The less structured dataset for the analysis was from BirdTrack, which is also a citizen science dataset, but with less stringent survey requirements and a wider range of participants than the BBS. BirdTrack participants contribute lists of species they have detected during a self-selected time interval spent at a self-selected location. We only considered complete lists, i.e. lists for which birdwatchers reported having listed all detected species, and furthermore only used lists with a location precision of 1 km collected from 01 April to 30 June of each year to match the spatial grain and temporal extent of the BBS. The resulting dataset therefore constitutes detection/non-detection data with potential biases associated with self-selection of sites and visit timings. The BirdTrack data are similar to the eBird dataset used in Walker \& Taylor (2017) and Horns et al. (2018), who also restricted their analyses to complete lists from self-selected locations with list-level effort covariates, but more structured than presence-only data used in other studies, e.g. the analyses based on the Swedish Artportalen (Snäll et al. 2011) or the Danish DOFbasen (Kamp et al. 2016), which did not allow for a distinction of complete lists and incidental records and for which no effort covariates were available. Compared to the BBS there are many more locations in the United Kingdom that have BirdTrack records, however, on a national scale the relative density of records for either scheme follows a similar pattern with fewer records in less populated and more mountainous areas such as the Scottish Highlands (Fig. S3).

For both datasets, sites where a target species had never been observed in the considered timespan were excluded from the analysis. This reflects the standard BBS analytical approach (Freeman et al. 2007; Harris et al. 2017) and means that derived trends reflect measures of local mean abundance and occupancy (sensu Wilson 2011).

Previous comparisons of trend models for opportunistic data against those fitted to structured schemes have been criticised for not comparing like with like, for example by comparing yearround occurrence data with breeding-season abundance data, or by including non-breeding species in comparisons based on breeding bird survey data (Fogarty, Wohlfeil \& Fleishman 2018). We aimed to address this concern by ensuring that the comparison between the two data sources was based on the same annual sampling period (April-June) and excluded species that were poorly covered by the structured surveys, and furthermore by propagating the uncertainty in all trend estimates into the comparative analyses.

2.2 Trend models

2.2.1 BBS abundance trends

Abundance models for BBS data followed the Poisson GLM approach employed in the official BBS trend production (Freeman et al. 2007), which models the mean local count $\lambda_{i t}$ at site i and year t based on the observed maximum counts $y_{o b s, i t}$ across the two survey visits as a function of fixed additive site and year effects β_{i} and β_{t}, respectively.

$$
\begin{gathered}
y_{o b s, i t} \sim \operatorname{Poisson}\left(\lambda_{i t}\right) \\
\log \left(\lambda_{i t}\right)=\beta_{i}+\beta_{t}
\end{gathered}
$$

We further used sampling weights - equal to the inverse inclusion probability of a site within a stratum for a given year - to account for uneven monitoring coverage among BBS survey strata.

Confidence intervals were calculated using design-based estimators as implemented in the svyglm function from the R package survey (Lumley 2004), rather than following the bootstrapping approach of Freeman et al. (2007).

2.2.2 BBS Occurrence Trends

Models of occurrence $p_{i t}$ for BBS data were based on truncating the count data to ≤ 1 and using a binomial GLM.

$$
y_{o b s, i t} \sim \operatorname{Bernoulli}\left(p_{i t}\right)
$$

The model structure and estimation otherwise mirrored the BBS abundance model described above with year and site effects

$$
\operatorname{logit}\left(p_{i t}\right)=\beta_{i}+\beta_{t}
$$

and the use of sampling weights and design-based estimators.

2.2.3 BirdTrack Reporting Rate Trends

Trends from BirdTrack data were based on the reporting probability model of Horns et al. (2018). The presence or absence of a species $y_{i t k}$ on a list k at site i in year t was modelled as the outcome of a Bernoulli trial

$$
y_{i t k} \sim \operatorname{Bernoulli}\left(p_{i t}\right)
$$

Because of the large number of sites with BirdTrack lists (c. 22,000) we used a random site effect γ_{i}, but retained the categorical fixed year effect β_{t} of the BBS models. We further used list duration, list length (number of species), and visit date (and its square to account for nonlinearity) as continuous predictors to control for heterogeneity in observation effort and observer skill.

$$
\operatorname{logit}\left(p_{i t}\right)=\gamma_{i}+\beta_{t}+\beta_{\text {duration }}+\beta_{\text {length }}+\beta_{\text {date }}+\beta_{\text {date } e^{2}}
$$

Models were fitted using the R package glmmTMB (Brooks et al. 2017). As BirdTrack has no formal sampling design we did not use sampling weights to correct for variation in geographical coverage, mirroring the modelling approach of Horns et al. (2018).

2.3 Calculation of relative change and associated confidence intervals

For all of the above models, year coefficient estimates were back-transformed to the response scale using the appropriate inverse link function, the percentage change relative to the defined index year 2005 was calculated. Confidence intervals (95%) for the relative change indices were approximated by simulation following Krinsky \& Robb (1986);Krinsky \& Robb (1990). Briefly, 1000 sets of year coefficients were drawn from a multivariate normal distribution parameterized with means $\hat{\beta}_{t}$ and the variance-covariance matrix of the corresponding model, followed by calculating the percent change index for each set as above and taking the 2.5 th and 97.5 th quantiles of the simulated indices.

2.4 Calculation of correlation coefficients among modelled trends

Similarly, pairwise correlations between estimated year coefficients from each of the three trend models and their associated confidence intervals were approximated for each species by simulation. That is, sets of year coefficients were drawn from a multivariate normal distribution parameterized with means $\hat{\beta}_{t}$ and the variance-covariance matrix of each model, followed by calculating Pearson's product-moment correlation coefficient r between sets of year coefficients from two models on the link scale.

2.5 Interspecific trend analysis

To determine whether the strength of intraspecific relationships among trends could be predicted using a species' characteristics, we used a multivariate generalized additive model (Wood 2017). Species characteristics assessed in the model included 'commonness', estimated from the average number of BBS sites in which a species was detected; the population trajectory of a species, based on the long-term (i.e. 12-year) BBS abundance trend; the species expected spatial distribution during breeding; and its detectability or recording probability. A species spatial distribution during breeding was assigned depending on the extent of its associations with conspecifics during nesting, as either semi-colonial, solitary or 'mixed' (i.e. mixed strategy; can nest either solitarily or semi-colonially). The species' body mass was used as a proxy for detectability (Johnston et al. 2014). Trait data on body mass and association during nesting were obtained from Storchová \& Hořák (2018).

We modelled Fisher transformed correlation coefficients $z=\operatorname{arctanh}(r)$ (Fisher 1915) from all three sets of trend comparisons simultaneously by using factor-smooth interactions for continuous predictors, and regular interactions for categorical predictors (Supplementary Table 1.1). The model used an identity link function and normally distributed errors. Responses z were weighted by the inverse of their standard error to propagate the uncertainty contained in the correlation coefficient estimate. Model parameters were estimated using mgcv (Wood 2017).

The magnitude of long-term trends in reporting rates was compared to abundance and occurrence trends using weighted least squares regression. The relative trend direction in BirdTrack reporting rates, BBS abundance and BBS occurrence models were also compared. We followed the definitions of sensitivity and specificity employed by Horns et al. (2018), but accounted for uncertainty in the trend estimates, i.e. true positives were defined as trends that are significantly positive in both the structured survey and reporting rate models; false positives if the structured model reported a significant decrease or no trend, but the reporting rate model suggested a significant increase; false negatives if the structured data suggested an increase or non-significant trend, but the reporting rates suggested a significant decrease; and true negatives where both data sources suggested a significant decrease.

3 Results

3.1 Relative trend magnitude

Across all investigated species, and using structured survey data, long-term occurrence trends were similar to abundance trends although there was wide scatter around the regression line (Fig.

1a; regression estimates and 95\% CIs: intercept=3.89 (-7.71, 15.49); slope=1.06 (0.9, 1.21); $\mathrm{R}^{2}=0.56$). However, for 29 very common species - those detected on more than 1500 (45%) BBS sites - occurrence trends were much weaker (essentially zero) than abundance trends (Fig. 1b).

Figure 1:(a) Across all species, occurrence trends (open symbols, solid green line) and abundance trends based on structured survey data (BBS) exhibited similar magnitudes. Reporting rate trends (solid symbols, solid orange line) based on BirdTrack lists were generally attenuated compared to BBS trends. Each point represents a 12-year trend estimate for a single species relative to 2005. Notable outliers are annotated, dashed line represents the $1: 1$ line, i.e. where both occurrence trends and reporting rate trends, respectively, produce the exact same increases/decreases as abundance trends within the 12 years of data. (b-d) For very widespread species (>1500 BBS sites) a saturation effect was apparent, with occurrence trends tending to zero (b). Reporting rate trends for these species did not exhibit this effect (d). Note that Y-axis ranges differ in panels b-d.

Long-term BirdTrack reporting rate trends were negatively biased, and overall showed a smaller magnitude of change relative to trends based on structured survey data, although with a few marked outliers. The magnitude of reporting rate-trends was on average about two thirds of the corresponding abundance trend (Fig 1a; intercept=-16.33 (-25.91, -6.74); slope=0.64 (0.43, $0.85) ; \mathrm{R}^{2}=0.21$). A similar bias and a slightly stronger attenuation was apparent when comparing long-term reporting rate trends to occurrence trends (Fig. S1; intercept=-19.14 (-29.1, -9.19); slope $\left.=0.47(0.27,0.67) ; \mathrm{R}^{2}=0.13\right)$. For both comparisons, trends for Little Egret Egretta garzetta, Cetti's Warbler Cettia cetti, Red kite Milvus milvus, and Ring-necked Parakeet Psittacula
krameri showed much larger reporting rate increases than abundance or occurrence trends (Figs. 1a, S1).

3.2 Relative trend direction

For the reporting rate-abundance comparison, false positives (i.e. significant decrease/no trend from abundance/occurrence model estimates but significant increase from reporting rate model estimates) occurred for 22 species, four of which had significant trends with opposite signs (Common Tern Sterna hirundo, Tree Pipit Anthus trivialis, Tufted Duck Aythya fuligula, and Willow Warbler Phylloscopus trochilus, Fig. 2a). False negatives (i.e. increase/ non-significant trend in abundance/occurrence model estimates but significant decrease from reporting rate model) occurred for 26 species, of which also four had significant opposing signs (Coal Tit Periparus ater, Feral Pigeon Columba livia, Peregrine Falcon Falco peregrinus, and Sandwich Tern Thalasseus sandvicensis, Fig. 2a). For the reporting rate-occurrence comparison (Fig. 2b), false positives occurred for 19 species, of which three had significant trends of opposite signs (Feral Pigeon, Peregrine Falcon, and Sandwich Tern), and 30 false positives, of which just a single one had a significant trend of opposite sign (Common Eider Somateria mollissima).

The sensitivity for the long-term trend was 0.46 for the reporting rate-abundance comparison (Fig. 2a), 0.45 for the reporting rate-occurrence comparison (Fig. 2b) and 0.77 for the abundance-occurrence comparison (Fig. 2c). The corresponding specificities were 0.61 (Fig. 2a), 0.62 (Fig. 2b), and 0.82 (Fig. 2c), respectively.

Figure 2: Classification matrices enumerating the species for which significant positive (+), negative (-), or nonsignificant trends (n.s.) were estimated, respectively, for each trend model comparison.

3.3 Interspecific patterns of correlation between alternative trend indices

Abundance and occurrence trajectories based on structured survey data were significantly positively correlated for 106 out of 141 species ($\bar{\rho}=0.59, \operatorname{IQR}(\rho)=0.39$, Fig. 3a). Correlations were weaker overall when comparing reporting rate trends from BirdTrack lists to either BBS trend (Fig. 3b,c), with 90 significant intraspecific correlations between reporting rate and abundance ($\bar{\rho}=0.44, \operatorname{IQR}(\rho)=0.61$, Fig. 3b), and with 90 significant intraspecific correlations between reporting rate and occurrence ($\bar{\rho}=0.46, \operatorname{IQR}(\rho)=0.55$, Fig. 3c). Significant negative correlations were found for three species (Common Tern, Canada Goose

Branta canadensis, and Feral Pigeon) between reporting rate and abundance trends, and for two species (Tufted Duck and Feral Pigeon) between reporting rate and occurrence trends.

Figure 3: Estimated correlation coefficients for comparisons of intraspecific trends among trend model types. Solid bars indicate correlation coefficient estimates that did not include zero in their associated 95% confidence interval.

All three pairwise comparisons showed similar patterns with respect to the investigated covariates: Correlations increased for solitary and mixed strategy (i.e. those nesting either solitarily or semi-colonially) breeders (Table S1), increased with absolute trend strength (Fig. 4 a), and commonness (Fig. 4 b). Site-occurrence, as determined from BBS data showed a saturation effect for species detected on about 1500 or more sites, which equates to about $>50 \%$ of surveyed sites). This effect was less pronounced when comparing reporting rate trends to occurrence trends, and absent when comparing reporting rate trends to abundance trends (Fig. 4 b). At intermediate levels of commonness reporting rate trends were marginally more closely correlated with occurrence trends, than with abundance trends. There was a similar negative correlation of body mass for all three comparisons (Fig. 4 c). While the effects of breeding association were generally positive compared to the reference level of colonial breeders, this was significant only for the correlations among reporting rate and occurrence trends in the case of solitary and mixed strategy breeders (Fig. 4 d).

Figure 4: Estimated smooth relationships between the z-transformed correlation coefficient for intraspecific population trends and abundance trend magnitude (a), and commonness (as measured by the number of BBS sites with positive detections for a given species; b) showed similar patterns among all three types of trend models. Agreement among trends was highest for strongly trending and widespread species. The correlation between abundance and occurrence trends saturated for very common species (b). Correlations increased somewhat with decreasing body size (c) and for solitary or mixed-strategy breeders (d).

4 Discussion

Intraspecific abundance and occurrence trajectories based on structured survey data were generally positively correlated, with significant positive correlations found for about 75% of investigated species. This is consistent with previous analyses (Webb et al. 2007). However, occurrence trends did show a saturation effect for the 29 most common species, which generally exhibit some degree of abundance fluctuations, but essentially no range changes. This was especially apparent when trends were converted to an index of relative change - a scaling that is routinely applied to abundance indices (e.g. Harris et al. 2017), in particular when these are used as the basis for multi-species indicators (Massimino et al. 2015; Strien et al. 2016).

Our study also shows significant agreement between BirdTrack reporting rate trends and BBSderived trends for over 60% of investigated species. It further shows that, for common species, reporting rate trends appear to resemble abundance fluctuations more closely than occurrence fluctuations. The absence of a saturation effect in reporting rate changes (in contrast to that found in the comparison of occurrence and abundance trends) may indicate that detections - and thus reporting rates - by BirdTrack participants are considerably lower for than those by BBS
volunteers. This is not surprising given that the BirdTrack participant base likely reflects a broader range of birding experience, and that most BirdTrack lists are of shorter duration than a full BBS survey. It does however raise questions about the precise interpretation of indices that are derived from species list reporting rates.

Several prior studies (Kamp et al. 2016; Walker \& Taylor 2017; Horns et al. 2018) have made the implicit assumption that reporting rate trends resemble occurrence trends, rather than abundance trends, for which we here find no convincing support. In a way, the finding that reporting rate trends correspond more closely to abundance trends may be a positive one, given that within-site abundance provides a more meaningful criterion for conservation prioritisation than site occupancy (Johnston et al. 2015). However, we still find a substantial amount of residual scatter in the reporting rate-abundance trend relationship, which indicates that the reporting rate trend models applied here may not provide abundance proxies of sufficient reliability for conservation planning (Oppel et al. 2012).

Fogarty et al. (2018) raised several important issues about previous comparative analyses by Horns et al. (2018) that used structured survey data from the North American Breeding Bird Survey and opportunistically collected data from eBird (Sullivan et al. 2009). Our study addressed these issues and found significant agreement between reporting rate and abundance trends, in concordance with Horns et al. (2018). However, overall our results paint a less optimistic picture of the applicability and robustness of simple statistical trend models for the derivation of population trends from opportunistic complete lists. In particular, there is little evidence from our results that simple models, that is, models accounting for list characteristics only, but not preferential sampling, provide a silver bullet for rare and poorly monitored species. Instead the best predictors for a high correlation between reporting rate trends and abundance trends were species commonness and magnitude of the abundance trend - characteristics that may be poorly known in the absence of robust auxiliary data.

The finding that widespreadness and commonness predict agreement among trends from the different datasets may also reflect fundamental properties of both survey schemes. Randomized designed surveys with rigorous recording protocols exist precisely to deliver abundance (or occurrence) measures that are unbiased - in space, in time, in species coverage - but the limited availability and/or cost of skilled observers and consequently limited spatial coverage mean this unbiasedness comes at the expense of relatively lower precision when rare species are considered. Opportunistic recording schemes on the other hand, may be created with primary objectives other than unbiased population assessments, e.g. as part of public awareness and education schemes or to aid personal record keeping for wildlife enthusiasts. Recording for personal record keeping in particular often puts a premium on maximising species diversity, and hence additional effort is expended by recorders to visit sites harbouring rare species (Booth et al. 2011), whereas schemes with a broad outreach focus are likely to exhibit preferential recording biases towards abundant and conspicuous species (Boakes et al. 2016). Widespread and common species are well covered in the latter type of opportunistic recording, and at the same time recording coverage for these species is likely to be less affected by the former type of rarity- or diversity-driven site selection. Lower agreement among trend estimates from the different data sources considered in this study may therefore be expected for locally constrained and/or rare species by the same token.

Reporting rate trends also showed a strongly attenuated magnitude, but this relationship exhibited wide scatter, highlighting potential difficulties in the interpretation of reporting ratebased indices. Many current conservation assessments (Eaton et al. 2015; IUCN 2016) rely on thresholds relating to relative abundance and/or range changes. The differences we found in the magnitude of trends based on different model types are therefore concerning as they influence the ranking of species in conservation prioritisation (see Fig. S2). Abundance (absolute or relative) or occupancy measures also form the basis of multi-species indicators, which play an important role in the policy processes surrounding conservation actions at national and supranational levels (Massimino et al. 2015; Burns et al. 2018; Mace et al. 2018). As there are nonrandom patterns in the strength of agreement between the different indices (namely based on species commonness and trajectory strength), our results suggest that aggregating indices based on different trend currencies (i.e. abundance, occurrence, reporting rates), as is e.g. the case in Strien et al. (2016), may further exacerbate known problems of multispecies indicators (Buckland \& Johnston 2017). Interestingly, while reporting rate trends were generally attenuated compared to BBS trends, there were four notable outliers (Little Egret, Cetti's Warbler, Red Kite, and Ring-necked Parakeet; Fig. 1a) which showed markedly larger reporting rate increases than BBS trends. All four species are relatively recent (re-)colonizers of the study area and are expanding in range and abundance (Balmer et al. 2013; Harris et al. 2017). This finding indicates that even complete lists (as opposed to opportunistic presence-only records), may still be biased towards novel observations.

Our results show that an opportunistic citizen science scheme with substantial participation and geographical coverage can provide a means of tracking a proxy of species abundance, at least for common or strongly trending species. However, it does not provide a silver bullet for avian population trend estimation based on simple models. Ultimately, characterising this trade-off between more and less structured schemes as a comparison - or even a dichotomy - in the first place is an approach that can only go so far. Data quality issues are not restricted to opportunistic citizen science data sets, e.g. observer effects are also known from structured surveys (Sauer, Peterjohn \& Link 1994; Jiguet 2009; Eglington et al. 2010; Farmer et al. 2014). Ignoring known features (e.g. preferential sampling) of any dataset conflicts with developing best practice recommendations for large scale citizen science datasets (Johnston et al. 2019); and rather than focussing on the strengths or shortcomings of individual datasets, we should aim to combine as much of the available data in joint models that explicitly take account of the observation process for any included dataset, and that ideally have (relative) population abundance as the target of inference. This can be challenging (Oppel et al. 2012), but such joint models are quickly maturing and their implementations are becoming more accessible (Pagel et al. 2014; Fithian et al. 2015; Miller et al. 2019; Isaac et al.). This provides opportunities to leverage the structure of robust survey schemes with the expanded coverage of opportunistic schemes. This is especially important when considering the vast majority of taxa. Birds are not only disproportionately well covered by structured survey schemes (Proença et al. 2017) and other strands of biodiversity research (Clark \& May 2002), but also receive disproportionate attention from the wider public in opportunistic citizen science schemes (Amano et al. 2016). In contrast, most non-avian groups of organisms are poorly surveyed, and data integration approaches leveraging both the depth of structured and the breadth of unstructured data may be the only way to gain insight into population status and trends.

405

406
407
408
409
410
411

Acknowledgements

We thank the many thousands of citizen scientists who contribute bird records to BirdTrack or the Breeding Bird Survey and the past and present organizers and staff of both schemes, particularly Sarah Harris, Scott Mayson, Nick Moran, and Andy Musgrove. BirdTrack is operated by the BTO, and supported by the Royal Society for the Protection of Birds, BirdWatch Ireland, Scottish Ornithologists’ Club, the Welsh Ornithological Society and BirdLife International. The BTO/JNCC/RSPB Breeding Bird Survey is a partnership jointly funded by the BTO, RSPB, and JNCC, with fieldwork conducted by volunteers. We thank the donors to BTO's BirdTrack Research Appeal for their financial support and Simon Gillings, Alison Johnston, Dario Massimino, Rob Robinson, and two anonymous reviewers for helpful comments and discussions. Computations for this study used JASMIN, the UK's collaborative data analysis environment (http://jasmin.ac.uk).

5 References

Aceves-Bueno, E., Adeleye, A.S., Feraud, M., Huang, Y., Tao, M., Yang, Y. \& Anderson, S.E. (2017) The accuracy of citizen science data: A quantitative review. The Bulletin of the Ecological Society of America, 98, 278-290.

Amano, T., Lamming, J.D. \& Sutherland, W.J. (2016) Spatial gaps in global biodiversity information and the role of citizen science. Bioscience, 66, 393-400.

Baillie, S.R., Balmer, D.E., Downie, I.S. \& Wright, K.H. (2006) Migration watch: An internet survey to monitor spring migration in Britain and Ireland. Journal of Ornithology, 147, 254-259.

Balmer, D.E., Gillings, S., Caffrey, B., Swann, R., Downie, I. \& Fuller, R. (2013) Bird Atlas 2007-11: the breeding and wintering birds of Britain and Ireland. BTO Thetford.

Bayraktarov, E., Ehmke, G., O’Connor, J., Burns, E.L., Nguyen, H.A., McRae, L., Possingham, H.P. \& Lindenmayer, D.B. (2018) Do big unstructured biodiversity data mean more knowledge? Frontiers in Ecology and Evolution, 6, 239.

Boakes, E.H., Gliozzo, G., Seymour, V., Harvey, M., Smith, C., Roy, D.B. \& Haklay, M. (2016) Patterns of contribution to citizen science biodiversity projects increase understanding of volunteers' recording behaviour. Scientific Reports, 6, 33051.

Booth, J.E., Gaston, K.J., Evans, K.L. \& Armsworth, P.R. (2011) The value of species rarity in biodiversity recreation: A birdwatching example. Biological Conservation, 144, 2728-2732.

Brooks, M.E., Kristensen, K., van Benthem, K.J., Magnusson, A., Berg, C.W., Nielsen, A., Skaug, H.J., Maechler, M. \& Bolker, B.M. (2017) glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. The R Journal, 9, 378400.

Buckland, S. \& Johnston, A. (2017) Monitoring the biodiversity of regions: Key principles and possible pitfalls. Biological Conservation, 214, 23-34.

Burns, F., Eaton, M., Hayhow, D., Outhwaite, C., Al Fulaij, N., August, T., Boughey, K., Brereton, T., Brown, A., Bullock, D. \& others. (2018) An assessment of the state of nature in the United Kingdom: A review of findings, methods and impact. Ecological Indicators, 94, 226236.

Clark, J.A. \& May, R.M. (2002) Taxonomic bias in conservation research. Science, 297, 191192.

Dickinson, J.L., Zuckerberg, B. \& Bonter, D.N. (2010) Citizen science as an ecological research tool: Challenges and benefits. Annual Review of Ecology, Evolution, and Systematics, 41, 149172.

Eaton, M., Aebischer, N., Brown, A., Hearn, R., Lock, L., Musgrove, A., Noble, D., Stroud, D. \& Gregory, R. (2015) Birds of conservation concern 4: The population status of birds in the UK, Channel Islands and Isle of Man. British Birds, 108, 708-746.

Eglington, S.M., Davis, S.E., Joys, A.C., Chamberlain, D.E. \& Noble, D.G. (2010) The effect of observer experience on English breeding bird survey population trends. Bird Study, 57, 129-141.

Farmer, R.G., Leonard, M.L., Mills Flemming, J.E. \& Anderson, S.C. (2014) Observer aging and long-term avian survey data quality. Ecology and Evolution, 4, 2563-2576.

Fisher, R.A. (1915) Frequency distribution of the values of the correlation coefficient in samples from an indefinitely large population. Biometrika, 10, 507-521.

Fithian, W., Elith, J., Hastie, T. \& Keith, D.A. (2015) Bias correction in species distribution models: Pooling survey and collection data for multiple species. Methods in Ecology and Evolution, 6, 424-438.

Fogarty, F.A., Wohlfeil, M.E. \& Fleishman, E. (2018) Response to Horns et al. 2018: "Using opportunistic citizen science data to estimate avian population trends". Biological Conservation, 226, 329-330.

Freeman, S.N., Noble, D.G., Newson, S.E. \& Baillie, S.R. (2007) Modelling population changes using data from different surveys: The common birds census and the breeding bird survey. Bird Study, 54, 61-72.

Gaston, K.J., Blackburn, T.M., Greenwood, J.J., Gregory, R.D., Quinn, R.M. \& Lawton, J.H. (2000) Abundance-occupancy relationships. Journal of Applied Ecology, 37, 39-59.

Gregory, R., Baillie, S. \& Bashford, R. (2000) Monitoring breeding birds in the United Kingdom. Bird Census News, 13, 101-112.

Harris, S., Massimino, D., Gillings, S., Eaton, M., Noble, D., Balmer, D., Procter, D. \& PearceHiggins, J. (2017) The Breeding Bird Survey 2016. British Trust for Ornithology, Thetford.

Horns, J.J., Adler, F.R. \& Şekercioğlu, Ç.H. (2018) Using opportunistic citizen science data to estimate avian population trends. Biological Conservation, 221, 151-159.

Isaac, N.J., Jarzyna, M.A., Keil, P., Dambly, L.I., Boersch-Supan, P.H., Browning, E., Freeman, S.N., Golding, N., Guillera-Arroita, G., Henrys, P.A., Jarvis, S., Lahoz-Monfort, J., Pagel, J., Pescott, O.L., Schmucki, R., Simmonds, E. \& O'Hara, R.B. Data integration for large scale models of species distributions. Trends in Ecology and Evolution.

Isaac, N.J. \& Pocock, M.J. (2015) Bias and information in biological records. Biological Journal of the Linnean Society, 115, 522-531.

Isaac, N.J., Strien, A.J. van, August, T.A., Zeeuw, M.P. de \& Roy, D.B. (2014) Statistics for citizen science: Extracting signals of change from noisy ecological data. Methods in Ecology and Evolution, 5, 1052-1060.

IUCN. (2016) Guidelines for Using the IUCN Red List Categories and Criteria. International Union for Conservation of Nature, Gland, Switzerland.

Jiguet, F. (2009) Method learning caused a first-time observer effect in a newly started breeding bird survey. Bird Study, 56, 253-258.

Johnston, A., Fink, D., Hochachka, W.M. \& Kelling, S. (2018) Estimates of observer expertise improve species distributions from citizen science data. Methods in Ecology and Evolution, 9, 88-97.

Johnston, A., Fink, D., Reynolds, M.D., Hochachka, W.M., Sullivan, B.L., Bruns, N.E., Hallstein, E., Merrifield, M.S., Matsumoto, S. \& Kelling, S. (2015) Abundance models improve spatial and temporal prioritization of conservation resources. Ecological Applications, 25, 17491756.

Johnston, A., Hochachka, W., Strimas-Mackey, M., Gutierrez, V.R., Robinson, O., Miller, E., Auer, T., Kelling, S. \& Fink, D. (2019) Best practices for making reliable inferences from citizen science data: Case study using eBird to estimate species distributions. bioRxiv, 574392.

Johnston, A., Newson, S.E., Risely, K., Musgrove, A.J., Massimino, D., Baillie, S.R. \& PearceHiggins, J.W. (2014) Species traits explain variation in detectability of UK birds. Bird Study, 61, 340-350.

Kamp, J., Oppel, S., Heldbjerg, H., Nyegaard, T. \& Donald, P.F. (2016) Unstructured citizen science data fail to detect long-term population declines of common birds in Denmark. Diversity and Distributions, 22, 1024-1035.

Kelling, S., Johnston, A., Fink, D., Ruiz-Gutierrez, V., Bonney, R., Bonn, A., Fernandez, M., Hochachka, W., Julliard, R., Kraemer, R. \& others. (2018) Finding the signal in the noise of citizen science observations. bioRxiv, $\mathbf{3 2 6 3 1 4}$.

Kery, M., Royle, J.A., Schmid, H., Schaub, M., Volet, B., Haefliger, G. \& Zbinden, N. (2010) Site-occupancy distribution modeling to correct population-trend estimates derived from opportunistic observations. Conservation Biology, 24, 1388-1397.

Krinsky, I. \& Robb, A.L. (1986) On approximating the statistical properties of elasticities. The Review of Economics and Statistics, 715-719.

Krinsky, I. \& Robb, A.L. (1990) On approximating the statistical properties of elasticities: A correction. The Review of Economics and Statistics, 72, 189-190.

Lawton, J.H. (1993) Range, population abundance and conservation. Trends in Ecology and Evolution, 8, 409-413.

Lumley, T. (2004) Analysis of complex survey samples. Journal of Statistical Software, 9, 1-19.
Mace, G.M., Barrett, M., Burgess, N.D., Cornell, S.E., Freeman, R., Grooten, M. \& Purvis, A. (2018) Aiming higher to bend the curve of biodiversity loss. Nature Sustainability, 1, 448.

Massimino, D., Johnston, A., Noble, D.G. \& Pearce-Higgins, J.W. (2015) Multi-species spatially-explicit indicators reveal spatially structured trends in bird communities. Ecological Indicators, 58, 277-285.

Meyer, C., Jetz, W., Guralnick, R.P., Fritz, S.A. \& Kreft, H. (2016) Range geometry and socioeconomics dominate species-level biases in occurrence information. Global Ecology and Biogeography, 25, 1181-1193.

Meyer, C., Kreft, H., Guralnick, R. \& Jetz, W. (2015) Global priorities for an effective information basis of biodiversity distributions. Nature Communications, 6, 8221.

Miller, D.A., Pacifici, K., Sanderlin, J.S. \& Reich, B.J. (2019) The recent past and promising future for data integration methods to estimate species' distributions. Methods in Ecology and Evolution, 10, 22-37.

Newson, S.E., Moran, N.J., Musgrove, A.J., Pearce-Higgins, J.W., Gillings, S., Atkinson, P.W., Miller, R., Grantham, M.J. \& Baillie, S.R. (2016) Long-term changes in the migration phenology of UK breeding birds detected by large-scale citizen science recording schemes. Ibis, 158, 481495.

Oppel, S., Meirinho, A., Ramírez, I., Gardner, B., O’Connell, A.F., Miller, P.I. \& Louzao, M. (2012) Comparison of five modelling techniques to predict the spatial distribution and abundance of seabirds. Biological Conservation, 156, 94-104.

Pagel, J., Anderson, B.J., O’Hara, R.B., Cramer, W., Fox, R., Jeltsch, F., Roy, D.B., Thomas, C.D. \& Schurr, F.M. (2014) Quantifying range-wide variation in population trends from local abundance surveys and widespread opportunistic occurrence records. Methods in Ecology and Evolution, 5, 751-760.

Pearce-Higgins, J.W., Ockendon, N., Baker, D.J., Carr, J., White, E.C., Almond, R.E., Amano, T., Bertram, E., Bradbury, R.B., Bradley, C. \& others. (2015) Geographical variation in species’ population responses to changes in temperature and precipitation. Proceedings of the Royal Society B, 282, 20151561.

Proença, V., Martin, L.J., Pereira, H.M., Fernandez, M., McRae, L., Belnap, J., Böhm, M., Brummitt, N., García-Moreno, J., Gregory, R.D. \& others. (2017) Global biodiversity monitoring: From data sources to essential biodiversity variables. Biological Conservation, 213, 256-263.

551 Roberts, R., Donald, P. \& Green, R. (2007) Using simple species lists to monitor trends in animal populations: New methods and a comparison with independent data. Animal Conservation, 10, 332-339.

Robinson, O.J., Ruiz-Gutierrez, V. \& Fink, D. (2018) Correcting for bias in distribution modelling for rare species using citizen science data. Diversity and Distributions, 24, 460-472.

Sauer, J.R., Peterjohn, B.G. \& Link, W.A. (1994) Observer differences in the North American breeding bird survey. The Auk, 111, 50-62.

Schmeller, D.S., Henry, P.-Y., Julliard, R., Gruber, B., Clobert, J., Dziock, F., Lengyel, S., Nowicki, P., Deri, E. \& Budrys, E. (2009) Advantages of volunteer-based biodiversity monitoring in europe. Conservation Biology, 23, 307-316.

Snäll, T., Kindvall, O., Nilsson, J. \& Pärt, T. (2011) Evaluating citizen-based presence data for bird monitoring. Biological Conservation, 144, 804-810.

Specht, H. \& Lewandowski, E. (2018) Biased assumptions and oversimplifications in evaluations of citizen science data quality. Bulletin of the Ecological Society of America, 99, 251-256.

Storchová, L. \& Hořák, D. (2018) Life-history characteristics of European birds. Global Ecology and Biogeography, 27, 400-406.

Strien, A.J. van, Meyling, A.W.G., Herder, J.E., Hollander, H., Kalkman, V.J., Poot, M.J., Turnhout, S., Hoorn, B. van der, Strien-van Liempt, W.T. van, Swaay, C.A. van \& others. (2016) Modest recovery of biodiversity in a western European country: The living planet index for the Netherlands. Biological Conservation, 200, 44-50.

Sullivan, B.L., Wood, C.L., Iliff, M.J., Bonney, R.E., Fink, D. \& Kelling, S. (2009) eBird: A citizen-based bird observation network in the biological sciences. Biological Conservation, 142, 2282-2292.

Walker, J. \& Taylor, P. (2017) Using eBird data to model population change of migratory bird species. Avian Conservation and Ecology, 12, 4.

Webb, T.J., Freckleton, R.P. \& Gaston, K.J. (2012) Characterizing abundance-occupancy relationships: There is no artefact. Global Ecology and Biogeography, 21, 952-957.

Webb, T.J., Noble, D. \& Freckleton, R.P. (2007) Abundance-occupancy dynamics in a human dominated environment: Linking interspecific and intraspecific trends in british farmland and woodland birds. Journal of Animal Ecology, 76, 123-134.

Wilson, P.D. (2011) The consequences of using different measures of mean abundance to characterize the abundance-occupancy relationship. Global Ecology and Biogeography, 20, 193-202.

Wood, S. (2017) Generalized Additive Models: An Introduction with R, 2nd ed. Chapman; Hall/CRC.

Please cite as Boersch-Supan et al. 2019 Biological Conservation 240:108286 https://doi.org/10.1016/j.biocon.2019.108286
©2019. This manuscript version is made available under the CC-BY-NC-ND 4.0 license. 587

Robustness of simple avian population trend models for semi-structured citizen science data is species-dependent

Philipp H. Boersch-Supan ${ }^{\text {a,b,* }}$, Amanda E. Trask ${ }^{\text {a,c }}$, Stephen R. Baillie ${ }^{\text {a }}$
https://doi.org/10.1016/j.biocon.2019.108286

[^0]616 Table S1 GAM summary table
617 Summary table of the generalized additive model comparing correlation coefficients among the 618 three different trend model types.

	Estimate	Std. Error	t-value	p-value
A. parametric coefficients	Estimate	Std. Error	t-value	p-value
(Intercept)	0.7532	0.1155	6.5194	<0.0001
comparisonBBS_abund_BT	-0.2641	0.1333	-1.9816	0.0483
comparisonBBS_occ_BT	-0.2717	0.1334	-2.0365	0.0424
comparisonBBS_abund_BBS_occ:association_during_nestingmixed	0.1449	0.1845	0.7853	0.4328
comparisonBBS_abund_BT:association_during_nestingmixed	0.2869	0.1630	1.7595	0.0794
comparisonBBS_occ_BT:association_during_nestingmixed	0.3691	0.1662	2.2206	0.0270
comparisonBBS_abund_BBS_occ:association_during_nestingsolitary	0.1278	0.1223	1.0450	0.2967
comparisonBBS_abund_BT:association_during_nestingsolitary	0.2010	0.1104	1.8211	0.0694
comparisonBBS_occ_BT:association_during_nestingsolitary	0.2295	0.1114	2.0591	0.0402
comparisonBBS_abund_BBS_occ:association_during_nestingsemicolonial	0.1360	0.2040	0.6666	0.5055
comparisonBBS_abund_BT:association_during_nestingsemicolonial	0.1311	0.1819	0.7209	0.4714
comparisonBBS_occ_BT:association_during_nestingsemicolonial	0.1525	0.1863	0.8186	0.4136
B. smooth terms	edf	Ref.df	F-value	p-value
s(log10chg20062016M):comparisonBBS_abund_BBS_occ	5.7603	6.8856	10.7406	<0.0001
s(log10chg20062016M):comparisonBBS_abund_BT	6.8127	7.8704	15.6729	<0.0001
s(log10chg20062016M):comparisonBBS_occ_BT	6.2824	7.3875	14.4649	<0.0001
s(log10nsqus12):comparisonBBS_abund_BBS_occ	2.8831	3.5502	12.2792	<0.0001
s(log10nsqus12):comparisonBBS_abund_BT	1.7518	2.1580	59.4252	<0.0001
s(log10nsqus12):comparisonBBS_occ_BT	2.1563	2.6614	30.6174	<0.0001

620 Table S2 Included species and their long term trends

621 Long term trends for the species included in the analysis. Trends significantly different from 0 at 622 $\mathbf{p}<0.05$ are presented in bold print.

Common name	BBS sites ${ }^{\text {a }}$	BBS abundance trend (\%)	BBS occurrence trend (\%)	reporting rate trend (\%)
Barn Owl	74	15.11	25.49	43.09
Black Grouse	22	270.33	591.91	83.8
Blackbird	3244	3.08	0	2.28
Blackcap	2303	57.39	0.1	167.88
Blue Tit	3034	-22	0	-40.19
Bullfinch	832	20.73	24.12	33.61
Buzzard	1632	30.19	11.72	148.21
Canada Goose	692	-4.9	16.52	20.25
Carrion Crow	3139	3.31	0	11.62
Cetti's Warbler	49	313.24	457.99	1265.98
Chaffinch	3259	-29.13	0	-53.01
Chiffchaff	2243	91.14	0.07	326.5
Coal Tit	1127	-13.66	1.51	15.55
Collared Dove	1724	-22.46	-0.26	-46.47
Common Sandpiper	84	-10.91	95.46	13.61
Common Tern	86	151.57	5.28	-25.91
Coot	347	-23.97	-22.15	-44.58
Cormorant	331	9.19	-1.39	11.73
Corn Bunting	152	-18.85	-28.37	-53.94
Crossbill (Common)	77	-22.95	20.74	1.46
Cuckoo	683	-24.07	-47.13	-42.09
Curlew	610	-14.46	-32.02	-43.48
Dipper	80	-36.6	-53.35	-4.54
Dunlin	30	19.18	-62.66	-35.04
Dunnock	2730	-0.17	0	2.89
Egyptian Goose	42	186.47	184.73	287.53
Eider	15	23.88	142.85	-29.03
Feral Pigeon	839	-35.68	-29.03	126.04
Gadwall	61	252.17	156.78	83.66
Garden Warbler	526	-9.86	-23.92	-2.69
Goldcrest	1071	-8.6	4.16	51.82
Golden Plover	77	10.32	-25.01	-19.67
Goldfinch	2423	73.8	0.12	183.5
Goosander	53	59.28	106.24	35.99
Goshawk	14	34.04	57.47	15.53
Grasshopper Warbler	108	16	16.16	11.67
Great Crested Grebe	88	40.28	-23.47	-17.48
Great Spotted Woodpecker	1591	7.11	3.71	-3.99
Great Tit	2932	-15.53	0	-28.63
Green Woodpecker	1080	-14.53	-8.31	-41.67
Greenfinch	2126	-73.07	-1.34	-83.49

Greenshank	14	8.32	-22.11	3.93
Grey Heron	811	-32.12	-46.39	-19.99
Grey Partridge	226	-36.96	-46.58	-72.66
Grey Wagtail	275	-29.82	-42.66	-3.96
Greylag Goose	385	29.3	189.39	138.57
Hen Harrier	18	65.32	175.5	-19.09
Hobby	57	9.43	8.35	-9.74
Hooded Crow	159	22.11	-0.29	4.95
House Martin	1130	-30.56	-16.92	-45.96
House Sparrow	2044	-1.17	0	-15.77
Jackdaw	2395	20.39	0.01	84.95
Jay	1061	-0.62	15.75	-2.08
Kestrel	795	-25.87	-38.18	-40.15
Kingfisher	67	-9.81	-9.33	2.63
Lapwing	788	-32.42	-59.86	-56.71
Lesser Spotted Woodpecker	20	-69.83	-89.69	-69.27
Lesser Whitethroat	359	37.67	50.51	60.07
Linnet	1443	-2.2	-5.13	-2.66
Little Egret	88	81.62	154.9	716.72
Little Grebe	89	-3.61	11.59	-12.14
Little Owl	92	-47.16	-59.98	-56.29
Little Ringed Plover	13	61.04	183.34	-38.5
Long-tailed Tit	1341	24.63	22.18	7.59
Magpie	2460	-4.72	0	-1.9
Mallard	1728	-5.41	-1.51	-16.61
Mandarin Duck	52	209.23	564.71	370.92
Marsh Harrier	40	20.19	51.14	154.81
Marsh Tit	165	-50.67	-64.03	-52.4
Meadow Pipit	1005	0.94	-1.01	-52.16
Merlin	25	-33.24	-36.3	-53.09
Mistle Thrush	1343	-28.17	-22.02	-41.07
Moorhen	772	-24.3	-24.84	-36.79
Mute Swan	334	12.41	-4.27	-20.17
Nightingale	37	-54.13	-61.14	-45.49
Nuthatch	752	16.33	20.64	61.11
Oystercatcher	463	-11.94	-4.46	18.63
Peregrine	69	-41.4	-53.15	40.76
Pheasant	2478	5.82	0	-19.85
Pied Flycatcher	39	-0.7	-18.43	-12.03
Pied Wagtail	1587	1.56	-2.38	-67.27
Pochard	22	46.3	-34.75	-12.61
Quail	10	-89.63	-87.49	-71.74
Raven	481	-14.56	70.03	163.08
Red-breasted Merganser	14	122.29	-7.86	-50.22
Red-legged Partridge	728	-9.1	-6.19	-29.6
Red-throated Diver	11	-39.74	21.52	17.12

Red Grouse	192	84.9	0.8	38.29
Red Kite	279	386.49	286.36	1909.57
Redpoll (Lesser)	224	25.02	68.33	103.84
Redshank	101	-27.16	6.88	-61.69
Redstart	235	23.76	114.65	13.95
Redwing	14	-78.15	-75.62	-17.71
Reed Bunting	685	16.25	7.57	-0.84
Reed Warbler	174	2.55	19.98	165.1
Ring-necked Parakeet	135	195.72	5.2	1621.27
Ring Ouzel	44	33.78	184.56	80.22
Ringed Plover	31	108.8	37.6	-58.25
Robin	3127	13.31	0	15.94
Rock Pipit	22	-52.57	-74.61	27.65
Rook	1663	-22.01	-0.3	-35.58
Sand Martin	176	51.54	54.93	41.52
Sandwich Tern	14	-83.36	-93.47	33.57
Sedge Warbler	361	-12.3	-0.88	12.42
Shag	16	-44.98	-82.58	5.59
Shelduck	180	-30.52	-36.46	-7.85
Short-eared Owl	23	25	-1.79	-36.11
Shoveler	20	47.52	-30.41	-13.89
Siskin	287	57.35	263.97	296.95
Skylark	2160	-15	0	-45.86
Snipe	214	2.93	29.37	-22.27
Song Thrush	2674	12.25	0.01	11.07
Sparrowhawk	413	-32.16	-41.01	-32.81
Spotted Flycatcher	183	-32.42	-63.59	-30.14
Starling	2023	-35.31	-0.13	-48.54
Stock Dove	1075	30.46	25.39	58.23
Stonechat	217	-25	-20.02	5.92
Swallow	2600	-23.36	0	-8.12
Swift	1180	-47.19	-44.96	-55.08
Tawny Owl	109	-27.86	-15.39	17.47
Teal	42	63.83	-31.22	6.72
Tree Pipit	173	27.78	38.76	-29.48
Tree Sparrow	252	74.91	141.73	0.12
Treecreeper	465	0.31	21.29	-7
Tufted Duck	198	40.68	23.13	-24.78
Turtle Dove	76	-83.49	-96.19	-81.24
Twite	19	-52.48	-76.9	-56.85
Wheatear	459	-19.45	-22.57	-24.63
Whimbrel	33	177	9.62	6.04
Whinchat	81	-31.35	-26.97	-26.22
Whitethroat	1820	13.3	0.14	21.69
Wigeon	15	97.33	189.88	-38.72
Willow Tit	39	-52.76	-68.48	-55.47

Please cite as Boersch-Supan et al. 2019 Biological Conservation 240:108286 https://doi.org/10.1016/j.biocon.2019.108286
©2019. This manuscript version is made available under the CC-BY-NC-ND 4.0 license.

Willow Warbler	1632	$\mathbf{1 5 . 5 4}$	0.17	$\mathbf{- 3 4 . 7}$
Wood Warbler	53	$\mathbf{- 4 4 . 3}$	$\mathbf{- 7 2 . 9 3}$	$\mathbf{- 3 5 . 9 1}$
Woodcock	15	-56.72	$\mathbf{- 7 4 . 6 2}$	-11.06
Woodlark	22	-32.04	$\mathbf{- 6 2 . 8 5}$	$\mathbf{- 3 3 . 3 5}$
Woodpigeon	3276	2.64	$\mathbf{0}$	$\mathbf{2 8 . 7 6}$
Wren	3222	$\mathbf{1 4 . 1 4}$	$\mathbf{0}$	$\mathbf{3 0 . 6 9}$
Yellow Wagtail	175	-3.71	27.47	$\mathbf{7 5 . 5 2}$
Yellowhammer	1407	$\mathbf{- 1 3 . 4 2}$	$\mathbf{- 0 . 3 7}$	$\mathbf{- 6 1 . 3 8}$

623

624
 Figure S1 - Abundance-occurrence correlations

Figure S1: Long-term (12year) reporting rate trends from BirdTrack lists were generally attenuated compared to abundance (solid orange symbols and line) and occurrence (green open symbols and line) trends from BBS data. Notable outliers are annotated, dashed line represents the 1:1 line. Error bars and shading represent 95\% confindence intervals.

631 Figure S2 - Rank correlations of trend ordered species

Figure S2: Species ranked by index trend strength from the strongest decline to the strongest increase based on each of the three trend models. Lines connect species between models. Spearman rank correlations of the species ordering among the three models are given at the top of the plot.

637

Figure S3 - Spatial distribution of records

Figure S3: Spatial distributions of bird records used in this study. Maps show 10km x 10km cells of the British National Grid with at least one record. The colour scale represents the proportion of $1 \mathrm{~km} \times 1 \mathrm{~km}$ cells with records within each of the $10 \mathrm{~km} \times 10 \mathrm{~km}$ cells. Left: BBS survey locations are randomized in space following a stratified design that takes regional volunteer availability into account. As a result there is a relatively even density of records across the UK. Centre: BirdTrack has a much higher overall density of records across the UK, with the exception of Northern Ireland. Notable "hotspots" with near complete spatial coverage exist in urban centres. Right: When including only sites with more than two years of data the overall distribution of BirdTrack locations follows a similar pattern as the BBS with lower record densities in the Scottish Highlands and other upland areas.

[^0]: ${ }^{\text {a }}$ British Trust for Ornithology, Thetford, United Kingdom
 ${ }^{\mathrm{b}}$ Department of Geography, University of Florida, Gainesville, FL, USA
 ${ }^{\mathrm{c}}$ Institute of Zoology, Zoological Society of London, London, United Kingdom * pboesu@gmail.com (P.H. Boersch-Supan)

